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Abstract--An expression is derived for the acceleration of a sphere in a potential fluid in terms of the 
local incident flowfield, without posing any restriction upon the latter. The expression is exact, i.e. the 
effect of all spatial derivatives of the incident velocity field is taken into account. 

1. INTRODUCTION 

It is well known that the velocity Vof  a body moving in an otherwise undisturbed potential 
fluid of infinite extent is constant in absence of external forces (d'Alemberts paradox). It is 
furthermore well known that a massless sphere reacts to a uniform acceleration d U / d t  of the 
fluid according to 

dt _ _ ~  -:-_2-- d-7' 

pb and p being the mass densities of the body and the fluid, respectively. In [1.1] 
differentation of the uniform velocity U is unambiguously defined since U is a function of 
time only. When obstacles, other than the sphere itself, occur in the fluid the incident 
flowfield is not uniform anymore and the effect of the spatial derivatives of the incident 
velocity has to be considered. The pertaining generalization of [1.1] is far from obvious. 
There is an approximate result by Voinov (Voinov 1973) for a massless sphere which, written 
for a nonzero body mass, reads as 

d'-7= 3 1 - 2 - -  ~ Ot + u . Vuo • [1.2] 

Voinov's result would imply that the simple time derivative in [ 1.1 ] has to be replaced by the 
material derivative of the local incident fluid velocity u0 = XT~bo. The fact that Voinov's result 
is not generally accepted and is moreover an approximation were reasons for us to reconsider 
the problem. In Sec. 2 we will derive the following extension of [1.2]: 

(,2 )dV IOU__o  Uo) 
- ~ =  3 ~ 0 t + Uo 

n!a 2"-2 O"rko O"Uo [1.3] 
+ 6  

,-2 (n + l)!(2n - I) (2n - 3) • • • 3 .10x  . . . . .  Ox ~"Ox ~' • • • Ox ~'" 

Voinov's approximation [1.2] represents the effect of the linear approximation to the 
incident velocity field and the correction, given by [1.3], is connected with the higher order 
nonuniformities. It is easy to see that the largest of the terms of the series of [ 1.3] is O ( a 2 / L  2) 

smaller than the first two "convective" terms, a being the radius of the sphere and L the 
length scale for variations in the incident velocity. As the latter is caused by the presence of 
other objects in the fluid its length scale is of the same order of magnitude as the distance 
from the sphere to these objects. Apparently Voinov's approximation is good as long as this 
distance is large compared to the sphere radius. 
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To apply [ 1.3] unambiguously to a given situation the incident flowfield must be defined 
rigorously. The definition presents itself if we imagine all boundaries in the fluid to be 
replaced by systems of singularities, a common abstraction in potential as well as Stokes 
flow. The flow incident at the sphere is precisely the difference between the total flow and the 
flow due to the singularities within the sphere, in other words, the part of the total flowfield 
which is regular at the location of the sphere. The concept of an incident ftowfield enables us 
to formulate certain characteristic of the body, such as the acceleration, in terms of a local 
variable which represents the effect of other boundaries in the fluid as a whole. For an actual 
situation, i.e. for given positions and velocities of the boundaries, all singularities and thereby 
the incident flowfield can be determined by the method of reflections (Milne-Thompson 
1938) although the calculations are feasible only for simple geometries. 

It is interesting to compare [1.3] to an expression for the velocity of a sphere in Stokes 
flow obtained by Fax6n many years ago (Oseen 1927): 

1 
V =  Uo + a2X72Uo. [1.4] g 

[1.3] and [1.4] can be regarded as counterparts: both express the relevant dynamical 
variable in terms of the local incident flowfield. That the acceleration is the relevant variable 
for potential flow is not surprising. Indeed, in an undisturbed fluid the velocity of the sphere 
would remain constant and could be attributed an arbitrary value. Nonuniformities of the 
incident flow alter this arbitrary velocity and therefore determine its rate of change. In 
Stokes flow on the other han--d the velocity of a moving body is not arbitrary but determined 
by the flow conditions. This is connected with the dissipative character of Stokes flow. 

Higher order derivatives than the second do not appear in [1.4]: the derivatives of order 
four, six, etc. vanish as follows directly from the Stokes equations (odd order derivatives do 
not occur anyway). It is furthermore noteworthy that [1.3], as opposed to [1.4], is nonlinear. 
This is a consequence of the fact that in potential flow the pressure depends nonlinearly on 
the velocity while Stokes flow is an entirely linear phenomenon. 

2. T H E  A C C E L E R A T I O N  AS A F U N C T I O N  OF T H E  I N C I D E N T  F L O W F I E L D  

The acceleration of a body immersed in a fluid is found by dividing the force - f  p n dS 
(n is the outward pointing unit vector normal to the body surface), exerted by the fluid on the 
body, by the mass of the body. Point of departure is therefore Bernoulli's equation 

_ p _ l p  Of) 1 [2. 

To express p in terms of the incident flowfield the total velocity potential q~ has to be 
written in terms of the incident velocity potential ~o. Since by definition 4~0 is regular at the 
location of the sphere it can be expanded in a Taylor series at the center q of the sphere: 

~Y--~ 1 ,-q [2.1] O"q~o 
4~o(r, t )  = ( x  --  q ) ~ ' .  • • ( x  --  q)~" Ox , ,  Ox ~" , 

n-O H .  • " • 

where r z (x l, x 2, x 3) and q = (ql, q2, q3). 

It turns out that the subsequent calculations pass off most efficiently in a frame of 
reference with its origin fixed to the center of the sphere. Therefore we start from an incident 
velocity potential given in the moving (noninertial) frame and derive an expression for the 
force experienced by the sphere in this frame. After that we will transfer that expression to 
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the inertial frame. The Taylor expansion of 4)o in the moving frame remains essentially given 
by [2.1] but it is now centered at the origin of the frame. Still denoting the spatial 
coordinates in the moving frame by x I, x 2, and x ~ we write instead of [2.1]: 

x ~. 1 ,,, . : ,  O= o I 
4)o(r, t) = 2-.-. -2i x " " Ox"' ,gx"" ,-o" 

n - O  i t .  ° • • 

[2.2] 

In what follows we will write D~"''4)o for O"4)o/OX"'.. • Ox" I,-o, while x . . . . .  x*" 
D~"'*'4)o, the nth spherical harmonic belonging to 4)0, is denoted by Q, or, if necessary, by 

0,(4)0). 
In the frame fixed to the sphere the total velocity potential obviously has to satisfy the 

condition 04)~Or = 0 at r = a. It is easy to verify that 4), given by 

g: ~..1 ( n r-  ]a2"+'l 4)(r, t) - __ 1 + - -  -"gZ'r. O., [2.31 
. -o  n +  1 

is harmonic and satisfies the boundary condition at r = a. According to [2.3] 4)(r, t) is the 
sum of the incident potential 4)o(r, t) and the potential due to a set of singularities located at 
the origin. These singularities may be identified as multipoles of increasing order, starting 
with a dipole for n = 2. Note however that the relation between the strength of these 
multipoles and the derivatives of the incident potential is far from simple (the velocity 
potential of a multipole of order n and~trength P. is given by ( -  1)"P.D ~'" .... (r -1) (Hobson 
1955). 

We now proceed with the integration of I/21 ~74) 12 on the surface of the sphere. Evaluate 
the derivative of [2.3] at r = a, 

Ox °= . (n + 1)!~0x ° - na-2Q"x° 

to express I/2 I ~74) 12 in terms of the spherical harmonics of 4)0: 

lflv4) 12n,,ds=l~.(2n+ 1)(2k + 1) 
"2 "2 . _ ( n +  1 ) ! ( k +  1)! 

['(OQ. na_2Q.xO [OQk ka_2Qkxe)n~ dS" 
• d ~ O x '  - ~ O x  ~ - 

U s i n g  the identity x°(OQ./Ox e) = nQ. ,  which holds for homogeneous polynomials of degree 
n, we can write 

l f l v 4 )  1 2 n , , d s = l ~ .  (2n+1)(2k+1)  
"2 . _ (n + 1)!(k + 1)! 

• f ( v Q , ,  vOk - nka-2Q,Ql , )n"dS.  

Since 

[2.4] 

O Q .  a ( x  * ' .  . . x ~') 

axe ax ° D~"'"¢o - nx ..... x .... D"'" ..... (D°4)o), 

OQ./ax  e is apparently n times the (n - 1)th spherical harmonic of D°4)o and we write [2.4] 
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! f l  v,  I:,,odS = ! ~2 ~ (2,, + l)(2k + 1).k 
2 2._,  _ ( n +  1)?(k + 1)? 

f [ Q . _ ,  D o D o • ( d a o ) Q k _ , (  Cbo)  - a - Z Q . ( c b o ) Q k ( ¢ p o ) ] n " d S  

in an obvious notation. 
This expression is symmetric in n and k and so 

! flve~12n.dS=! ~, (2n + l ) : , :  f t Q : _ , ( o , o o  ) _ ~-:Q:(Oo)J,"dS 
2 2 _ ((n + 1)?): 

£ £ (2n + l)(2k + 1) 
+ 

.-~ k-.+t (n + 1)?(k + 1)? n k  

• f[Q._,(D°4~o)Q,_,(D%o) - a - 2 Q . ( e p o ) Q k ( d p o ) ] n " d S .  

[2.5] 

Let us first evaluate 

f Q , ( 4 ~ o ) Q k ( 4 ~ o ) n " d S  = D~"""4~o • D ~ " e ' 4 ~ o f  x ° '  • • • x ° " x  ~' • • • x a ' n " d S .  

Apply Gauss' theorem to the surface integral: 

f Q.(4~o)Q~(4~o) n"dS 

= D ~'''''4~o • D ¢'''#'~po :[O(x Xa, X ~ X #~ ) 

O x  '~ ,J 
d V  

= n D " ' "  . . . . . .  dp o • Da"'a~Jp o f x . . . . .  xo. x .  • • • x O ~ d V  

+ kD"" '~"4~o  • D ~' ' '~ . . . .  c~o f x o , .  • • xo.x. . . . .  x a ~ - ' d V .  

[2.61 

Both integrands in [2.6] are the product of k + n - 1 components of the coordinate vector r. 
In spherical coordinates r, 0, and o~ the integrands could be split up in a factor r k+"-~ and a 
factor depending only on the angles 0 and o~. As the boundary of the integration region is 
spherical the integration of both factors can be carried out independently. It follows from 
this observation that, since 

f o  a ak+n+2 
r k + " - I r 2 d r  k + n + 2 "  

the following two identities hold: 

f x ~, . . . x ~ . - , x  o, . . . x S ,  d V -  

f x a, . . . x a . x  ~, . . . x / J , - , d V =  

o f k + n + 2 x~ '  " " " x ~ ' - ' x a '  " " " x~'dS' 

° f k +  n + 2 x~ '  " " " x " "xa '  " " " xa `  ' d S "  
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Inserting these identities into [2.6], one finds 

fQ.(4OQ,,(e~o)n"dS 

a ft k + n + 2 nQ,,_,(O%bo)Qj,(qbo) + kQ,(Oo)Qk_x(O"4~o)]dS. [2.7] 

Next  we apply basically the same reduction technique to fQ, ,_ ,(D"~o)Qk(cbo)dS:  

fQ._ , (BeOo)QA¢o)dS 

= O " "  .. . . . .  ~o" oO"%ofx . . . . .  x°'-'xO'.., x~ 'dS  

f O ( x  . . . . .  x .... x ~ . . . .  x ~'-') 
= aD~" . . . . . .  0 o "  D~"'a~Oo Ox a, dV 

= (n - 1)a Be," ...... ~bo • D a'''a ....... Oo f x  . . . . .  x .... . . . .  xa ' - 'dV 

+ (k - 1)a Be" ...... ~bo • Da"'a*-~'t~'~bo f x  . . . . .  x .... • • xA-'dV. 

The last term vanishes since 4~o is harmonic.  The  volume integral in the last term but one can 

be converted to a surface integral in the~ame way as before yielding 

f Q._, (o"~o) Q,,(~o) dS a2(n - 1) 
D ~'' ..... D ..... ~o 

n + k 

t "  
• Da"a ' - 'D  .... ~o J x  ~'" • • x xO,..~-,dS 

(n 1)a 2 I 

f o , , -2(  "- C~o)Qk-I(D .... C~O) dS.  O Ct l a  

n + k  , j '  

[2.8] 

[2.8] Represents the first step of  a systematic reduction process for f Q, - t  (D~ffo) Qk (4~o) dS. 

After  i reduction steps one obtains 

f Q._, (D%ko) Qk(~po) dS  = 

( n -  1 ) ( n - 2 ) .  • . ( n -  i )a  2i 

( n +  k ) ( n +  k -  2 ) .  • • ( n +  k -  2i) 

• . ]  " ~ n - i - I  ~, 'cOl Q k _ i ( D  . . . .  " . . . . .  dpo) d S .  

[2.91 

The reduction proces is continued until n - i - 1 or k - i is zero. We are then left with an 
i n t eg randx  ~ . . . .  x ~ ..... (if n -  l > k ) , x  a . . . .  x a ..... (il ~ n -  l < k )  o r l ( i f n -  1 = k ) . I n  

the first two cases further reduction leads to the result f Q,,_t(D~'¢o)Qk(~bo) d S  ~ 0 for a 

harmonic function 4~o. This corresponds to the well known fact that  the integral on a sphere of  
two spherical harmonics of different degree is zero (Hobson 1955). For i - k = n - 1 [2.9] 

becomes 

£ £ 
Oa t Q . -  ~ ( 4'o) O . -  i (4'o) = dS 4~ 

(n - 1 ) ! a  ~ 

( 2 n -  1 ) ( 2 n - 3 ) . . . 3 . 1  [2.10] 

D"'" ...... ~o"  D"'"  ..... q~o- 
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The second term of [2.7] can be evaluated in the same spirit: 

fQ.(4~o)Q,-i (D~gao) d S  is nonzero only when k = n + l and 

f Q. (D"epo) = 47r 
rt! a 2n+2 

(2n + l ) (2n  - 1) • • • 3.1 
D a ' ' ' ' "  4~o " D q~o, 

which follows from replacing n - 1 by n in [2.10]. 

Using this result and [2.10] in [2.7] we find 

n ! a 2n+ 1 
f Q,, (4%) Qk (¢bo) n a d S  = 4 r  

(2n + 1)(2n - 1) • • • 3.1 

[ zn+~n+l ] • 6k,.-1D~'' ...... q~o " D~" ..... q~o + 5k,,+l ~_--~-y-4a2D""'°~'¢o • D~""%bo m 

[2.111 

Replacing n by n - 1, k by k - 1, and 4>o by D o 4~o in [2.11 ] one finds 

( n -  1)!a  2"-I 
f Q._, Qk-,  (D°4~o) n ~ d S  = 47r 

(2n - l ) ( 2 n  - 3) • • • 3.1 

[ ] • tSk, ._ lD"" ' ' -~¢o • D"'" .... ~t¢o + ¢5k,.+1 ~ - ~ -  i- D"" ..... ~¢o " D"'" ..... °¢o . 

We are now in the position to evaluate 1/2 f Iv¢ 12 n°dS. The single series in [2.5] vanishes 

because of  the orthogonali ty property of  the spherical harmonics. Taking fur thermore into 

account  that  only the values k = n + 1 contribute to [2.5], one finds after some elementary 

algebra that  

_l flv  12n"dS = 4 ,  
2 n-I 

gla2n + I 

(n + 1)!(2n - 1)(2n - 3) • • • 3.1 
D °'''~'4>o " D °'''~"~ 4)0. 

[2.121 

Remains  to integrate OcblOt = D,4~. Differentiate [2.2] with respect to time: 

0~b ~ 2n + 1 x ~" 
Ot - _~ (n + 1)------~ x"' " " " D'D~"''4~°" 

It is easy to see that  only the first term of  the series survives integration: 

3 
f ~tt n " d S  = -~ r D, I T  dpo, 

with r = (4~r/3) a 3. Adding this expression to [2.12] we have the force on the sphere in the 

reference frame fixed to the sphere: 

3 ~ 1  na2n+ i 
- f p n ~ ' d S  = ~ p r D ,  D°dpo + 4~rp . (n + I ) ! - ~ -  1) • • • D°"'~"4~°" D°"'"~q~°" 

To t ransform this expression to an inertial frame, with respect to which the velocity Vof  
the sphere is measured, the pressure gradient and the velocity potential have to be modified 
by an amount  of  o ( d V / d t )  and V • r, respectively. We obtain after the pertaining 
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transformation of the time derivative of 4~o: 

1 dV" 3 F 
J p n " d S  = - -~ Or ~ + -~ Or D,D%ho 

na2n + i 

+ 4a-0~-'._~ (n + l ) ! (2n  - 1)(2n - 3) • • • 3.1 O~"'"'4~° " D~"'~"~b°' 

where all variables are now defined in the inertial frame. Putting the body mass equal to Obr 
we find from the condition - f pn"dS = pbr l~ that 

dt ~ Ot + ug'D~' 

na 2n - 2 ] 

+ 6 ~,-2 (n + 1)!(2-n --- l)  • • • 3.1 D""'"4~o • D""'~"4~o , 

which is [1.3] in a slightly different notation. 

The material derivative OUo/Ot + u~' D"' Uo can be written eventually as Vpo, the gradient 
of the incident pressure. Body forces can be incorporated by discounting them in the incident 
pressure. 
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